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Atomic supersymmetry is a quantum-mcchanicat supersymmetry connect-

ing the properties of different atoms and ions. In this talk, I provide a short

description of some established results in the subject and discuss a few re-

cent developments, including the extension to parabolic coordinates and the

calculation of Stark maps using supersymmetry-based models.

1. Introduction

It can often be impractical to find exact solutions to the equations determining

the properties of a physical system. The identification and use of symmetries is

one method that can be useful in the search for a mathematically simpler but

physically sufficient description.

An example is provided by the behavior of the valence electron in alkali-metal

atoms, which is governed in detail by the solution to an involved many-body prob-

lcm. The essential physics of this situation can largely be contained in a single-

electron model with an effective central potential [1]. This talk concerns symmetry

issues involved in this approach, in particular, the role played by supersymmetry

in a realistic central-potential approximation.

The first part of this talk (sections 2-5) provides some background and an
overview of established results in atomic supersymmetry using spherical coordi-

nates. The second part (sections 6-8) discusses recently developed extensions of

these ideas to other coordinate systems and to the supersymmetry-based descrip-

tion of the Stark effect. More information on the approach used, its relation to

other methods, and recent developments can be found in the references cited.

2. Supersymmetric Quantum Mechanics

A quantum-mechanical system is called supersymmetric [2] if its hamiltonian

H commutes with N supersymmetry generators Qj satisfying {Qj, Qk} = _jkH.

The superalgebra generated by H and Qj is denoted sqm(N). Of interest here is the
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special case sqm(2), for which it is convenient to consider the linear combination

Q = (Q1 + iQ2)/v/2 satisfying H = {Q, Qt}.

A simple representation of sqm(2) sets

00)' .= H+ 0 ) (2.1)0 H_ '

where A = -iOx - iU'/2 with U' = dU/dx for some function U = U(x).

components H+ satisfy

d 2

where V+(x) = U'2/4 T U"/2.

The

(2.2)

If the supersymmetry is unbroken, the energy of the ground state is zero. The

eigenspectra of H+ are degenerate except for this state, which is associated with

H+. The spectra of H+ and H_ are called, respectively, the bosonic and fermionic

stacks. Degenerate states in the bosonic and fermionic stacks are mapped into one

another by the supersymmetry generators Q, Qt.

3. Atomic Supersymmetry

The Schrgdinger equation for the hydrogen atom separates in spherical polar

coordinates. The radial piece can be written in atomic units as

d 2 1 l(l + 1) 1 E
+ y2 _ .]X.z(y)=0 (3.1)[ dy2 y --

where y = 2r, En = -1/2n 2, and X,t(2r) = rR,l(r). The radial wave functions

are

2 F(n- l) ½ 2r r (2z+1) 2r
Rnl(r) = _-ff [F(n -t-l--_ 1)] (n)lexp(-n) Ln-l-1 (-n-) ' (3.2)

where the Sonine-Laguerre polynomials are dcfined by

" P(n + a + 1)

L(_)(x) = E(-X)Pp! (n - p)! r(p + a + 1)
p----0

(3.3)

The idea is to identify the radial equation (3.1) for fixed I with the hamiltonian

H+ of a supersymmetric quantum mechanics, as in Eq. (2.2). One can then
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construct the supersymmetry generator Q, determine H_, and seek a physical

interpretation [3].

The supersymmetry is determined by specifying the function U. For the

Coulomb problem, it is U(y) = y/(l + 1) - 2(/+ 1)lny. The partner hamiltonian

H_ can be shown to have the same form as H+ except that l is replaced with

(l + 1) in the 1/y 2 term. This means tha_ _he eigenfunc_ions of H_ at fixed l are

R,,l+l with n >_ 2. These form a complete and orthonormal set.

To understand the physical interpretation, recall that H_ has the same spec-

trum as H+, excluding the lowest state. This suggests H_ describes a physical

system that looks hydrogenic except that the ground state is inaccessible. The

idea is to attribute this to the Pauli principle. The partner system is then an

atom with the lowest state filled with electrons, and H_ is an effective hamilto-

nian for the valence electron. For example, if I = 0 the spectrum of H+ spans the

s orbitals of hydrogen and the spectrum of H_ represents the s orbitals accessible

to the valence electron in lithium. Evidently, the supersymmetry holds only if the

non-hydrogenic electron interactions are disregarded. The incorporation of these

symmetry-breaking effects is described in section 5.

In the exact-symmetry limit, the supersymmetry can be extended. For ex-

ample, the s orbitals of lithium and sodium can also be viewed as supersymmetric

partners. There are supersymmetric connections of this sort among atoms and

ions across the periodic table, all physically incorporating the effects of the Pauli

principle and mathematically implemented by integer shifts in the angular quan-

tum number I.

Ref. [3] presents more details of the construction and discusses the experi-

mental support for this atomic supersymmetry.

4. Oscillator Formulation

The oscillator formulation of atomic supersymmetry outlined in section 3

is closely related to harmonic oscillators. Indeed, connections exist in arbitrary

dimensions among the radial equations for the Coulomb problem, the harmonic

oscillator, and the two sqm(2) supersymmetric partners of these systems [4].

The radial equation for the d-dimensional Coulomb problem can be written
in atomic units as

[ d 2 l+(l+7)(l+7+l)_lEdn]Vd,_t(y)= 0 (4.1)
dy2 y y2 2 '

where y = 2r, Edn = --1/2(n + 7) 2, 7 = (d - 3)/2, and the radial wave functions

are

_ r(2/+2_+1)
Vd.,(y) = cg._, yl+'r+l exp(--y/2(n + 7))_n_,_ 1 (y/(n + 7)) , (4.2)
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with Cd,,t a normalization constant. If the operator in Eq. (4.1) is interpreted as

H+ in an sqm(2) supersymmetry, the partner H_ can be shown to have the same

form but with l replaced by l + 1.

The radial equation for the D-dimensional harmonic oscillator with unit an-

gular frequency in atomic units is

[ d2 1 (L+r)(L+r+l)dy2 y + y2 -- EDN]VDNL(Y) = O , (4.3)

where Y is the radial variable, EDN = 2N + 2F + 3, F = (D - 3)/2, and the radial

wave functions are

VDNL(Y) CDNL yL+r+l , _;2,,_xr(L+l'+l/2),,;2= expl--z /ZJ_Nl2_L/2 t1 ) , (4.4)

where CDNL is a normalization constant. The sqm(2) partner H_ to the operator

H+ in Eq. (4.3) again has the same form but with L replaced by L + 1.

A state in the d-dimensional Coulomb problem can be related by a one-

parameter mapping to a state in a D-dimensional oscillator [4]. The eigenfunctions

Vd,Z and VDNL are related by Vd,,t((n+7)Y 2) cx yI/2VDNL(Y ) with N = 2n-2+_,

L = 2t + _, and even D = 2d- 2- 2_. The parameter A is an integer. Restrictions

on the possible choices of the parameter, the dimensionality, and the quantum

numbers can arise if several Coulomb-problem states from one system are required

to be mapped to a specified harmonic oscillator. The map can be combined with

the supersymmetric maps shifting the angular quantum numbers, resulting in a

commutative diagram between states of the four systems. The reader is referred

to [4] for further details.

5. Supersymmetry-Based Quantum-Defect Theory

The energy eigenvalues of the valence electron in an alkali-metal atom are

shifted relative to the hydrogenic values by interactions with the core. The

eigenvalues can be expressed as the Rydberg series [5] En- = -1/2n *_ with

n* = n - _(n, 1), where for given l the quantum defect 6(n, l) rapidly approaches

an asymptotic value _(l) as n increases. These shifts break the supersymmetries

described in section 3.

Despite this, it is possible to develop a central-potential model incorporat-

ing supersymmetric features that has analytical wavefunctions as solutions and

eigenenergies given by the Rydberg series [6]. The theory is defined by a radial

equation obtained from Eq. (3.1) by replacing n,l, E, with n*, I*,E,.. Here, l*

is a new angular quantum number given by l* = l- 6(1) + I(1), where I(1) is

an integer shift characteristic of supersymmetry. The eigenfunctions are given by
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the replacement of n and l in Eq. (3.2) with n* and l*. The Sonine-Laguerre

polynomials still appear because n* - l* - 1 = n - l - I(1) - 1 remains an integer.

For asymptotic quantum defects 6(l), these eigenfunctions form an orthonormal

and complete set.

Ref. [6] contains more details about this model and demonstrates that the

analytical eigenfunctions yield transition probabilities that are in agreement with

experiment and with accepted values [7]. Related developments, other than those

to be discussed in the remainder of this paper, include the following.

• The eigenfunctions of the model have been used as trial wavefunctions for

detailed atomic calculations [8].

• The validity of the theory at short distances has been examined by investi-

gating predictions for the fine structure of alkali-metal atoms [9]. Certain key

features observed experimentally are reproduced and the Land_ semiempirical

formula naturally appears in the model.

• The model has been used to examine transition probabilities for other atoms,

notably alkaline-earth ions [10].

• The mathematical structure of the model has been shown to be connected

with parastatistics [11].

6. Separable-Coordinate Supersymmetries

Tile SchrSdinger equation with a Coulomb potential V(r) = -1/r separates

directly (no modulation factor) in four different coordinate systems: spherical,

conical, prolate-spheroidal, and parabolic. Each separation results in three ordi-

nary differential equations, so a priori there are twelve candidate equations for the

role of a supersymmetric partner hamiltonian in an sqm(2) realization. However,

additional constraints arise from the structure of Eq. (2.2): to play the role of

H+, an equation must be expressed in the appropriate form and the eigenspec-

trum must involve a tower of states labeled by the appropriate eigenvalue. Some

results of an examination of possible sqm(2) supersymmetries involving the twelve

candidate equations are described in this section. More details are provided in

ref. [12].

First, consider spherical coordinates. The eigenfunctions for the Coulomb

problem separate into a product of radial wave functions given in Eq. (3.2) and

the spherical harmonics, which in turn decompose into products of associated Leg-

endre functions and exponentials. As discussed in section 3, the radial equation

does admit a supersymmetric partner. The equation for the associated Legendre

functions can be rewritten in the form of Eq. (2.2) by admitting a modulation

factor, but the ensuing equation lacks an eigenvalue representing an infinite tower
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of states. The remaining azimuthal equation is uninteresting because it has zero

potential. Therefore, the only interesting sqm(2) supersymmetry in spherical co-

ordinates appears in the radial equation.

In conical coordinates, the coordinate surfaces are spheres and cones of ellip-

tic cross section along the z and x axes. One coordinate is just the radial variable,

and the eigenfunctions for hydrogen are products of Lam_ functions with the same

radial wavefunctions as in spherical coordinates. The radial equation has the su-

persymmetry described in section 3 and the same physical interpretation applies,

although the complete eigenfunctions for the supersymmetric partner states in-

volve Lam_ functions rather than the spherical harmonics. Each of the other two

separated equations can be rewritten without a linear derivative term as in Eq.

(2.2), but no interesting supersymmetry exists.

The Schrhdinger equation for the Coulomb problem also separates in prolate-

spheroidal coordinates. It can be shown that none of the three resulting equations

admits an interesting sqm(2) structure.

Finally, consider parabolic coordinates. These are defined by p = r + z,

a = r- z, ¢ = tan-l(y/x), where r is the radial coordinate. The hydrogen eigen-

functions in parabolic coordinates can be written as the product u(p)v(a)¢(¢).

The equation determining ¢I,(¢) is uninteresting in the present context. The equa-

tion for u(p) can be expressed in the form of an H+ by extracting a modulation

factor u(p) = p-al2xl(p ). The ensuing equation for X1 is

d 2 1 - m 2 Z 1 E

"[dp--_ + 4p 2 + --p + z--L-]Xa(P) = O, (6.1)

where E is the energy and m is the magnetic quantum number. A similar analysis

can be carried out for v(a), resulting in an identical equation but with X1, P, and

Z1 replaced by X2, a, and Z2. The separation constants Z1 and Z2 are required

to satisfy Z1 + Z2 = 1. The eigensolutions have the form

1 _+1[. F(nA+I) '
u,,,_m(p) = (7)_e tr(n,+rn+l)]_e-_"p½mL(,"_)(cP), (6.2)

with a similar expression for v,,,,,,,(a). Here, tl 1 = Z1/e - (17l ..-}- 1)/2, R2 =

Z2/e - (m + 1)/2 are nonnegative integers, and e = _ for E. = -1/2n 2 with

n = nl nun2 -}-ran t- 1.

The equations for X1, X2 admit supersymmetric partners. The functions U(p),

U(a) determining the supersymmetry are U(p) = 2Zlp/(m + 1) - (m + 1) In p and

U(a) -- 2Z2_r/(m + 1) - (rn + 1)lna. Ref. [12] shows that the superpartner

equations and eigensolutions have the same form as Eqs. (6.1), (6.2) and their

analogues for the a coordinate, but with the replacements na ---* nl - 1, n2
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n2 - 1, m _ m + 2. The supersymmetry leaves invariant the principal quantum

number n, as needed for a mapping between degenerate states.

The basic approach to a physical interpretation is analogous to the spherical-

coordinate case but the existence of two supersymmetries permits more possibili-

ties. Only two (natural) cases are mentioned here; see ref. [12] for more details.

The valence-electron states for light alkali-metal atoms can be labeled using

a spectroscopic notation based on the parabolic quantum numbers nl, n2, m. For

convenience, the lowest- and highest-energy sublevels in a manifold of states with

fixed m >__0 are called the red and blue levels, respectively. It turns out that

a natural choice for the bosonic stack is the set of all blue states of hydrogen.

Interpreting the absence of a fermionic-stack partner for the ground state as a

consequence of the Pauli principle and treating electron-electron interactions as

supersymmetry-breaking effects, the blue lines of hydrogen can be shown to be

partnered by the blue lines of lithium. A similar construction can be made for

the red lines of hydrogen and lithium. These supersymmetries extend to other

alkali-metal atoms in a manner analogous to the spherical-coordinate case.

7. Quantum-Defect Theory in Parabolic Coordinates

The interactions breaking the supersymmetries in parabolic coordinates can

be incorporated using notions from quantum-defect theory. For this case, the

asymptotic quantum defects 6 entering the Rydberg expression for the eigenener-

gies depend on the two parabolic quantum numbers nl and m. It can be shown

that an effective potential exists for the two-dimensional separated equation in p

and a that has analytical eigenfunctions of the same form as in section 6 with the

Rydberg series as eigenvalues, while incorporating the integer shifts characteristic

of supersymmetry [12].

In separated form, the model is specified by

d 2 1 - m_ '2 Zt E*

[d- fi+ +--+-K]x;(p)=°p (7.1)

and a similar expression for the equation in a with subscripts 1 replaced by sub-

scripts 2. The functions X_(P) play a role analogous to XI(P) in section 6, and the

separation constants Z_' and Z_ satisfy Z_ + Z_ = 1.

Solutions to these equations exist only if n*_ = Z_/_-(m'_ + 1)/2 and

n[ = Z;/_'-Z_ --;- (m_ + 1)/2 are nonnegative integers. Note that n* = n- 6 =

n'{ + n_ + (m; + m_)/2 + 1. The wavefunctions are

Un;n;m;m_(p)=(1)¼(n,)--(--_t-_+l)[Li.,(n_Z-'(_ -['-1)+m_ at- :] ]----¢--!m* .(m.*)(_,)1P e 2.*p2 ,L.I- ,

(7.2)
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with an analogous result for the _r-dependent equation. It can be shown that these

model wavefunctions are not fully orthogonal for physical values of the asymptotic

quantum defect, although the off-diagonal matrix elements are numerically small.

The four quantum numbers that appear depend on the parabolic quantum

numbers, the quantum defect, and the supersymmetry integers. Define n_ =

rtl -11, n_ = n2-12, where 11 and 12 are integers, and m 1 = re+a1, rn 2 = rn+ae,

with the constraint al + a2 = 211 + 212 - 25. If 5 is set to zero, the constraint

reduces the four variables 11, /2, al, a2 to three and the exact supersymmetry
limit of section 6 can be recovered.

8. The Stark Effect

In an external electric field of strength F, the energy levels of the valence

electron in an alkali-metal atom are shifted by amounts depending on F. A plot

of the eigenenergies as a function of F is called a Stark map. An exact theoretical

treatment for Stark maps of alkali-metal atoms is impractical. However, numerical

approximation methods yield Stark maps in good agreement with experiment [13].

The analytical eigenfunctions obtained from supersymmetry-based quantum-

defect theories in parabolic and spherical coordinates provide another approach

to obtaining Stark maps [12]. In parabolic coordinates, the nonorthogonality of

the eigenfunctions is a barrier to exact analysis. One possible approximation

is to neglect the small off-diagonal components of the zero-field energies. This

calculation yields Stark maps with curves that are largely linear, in disagreement

with experimental results.

This difficulty is absent in spherical coordinates. The zero-field wavefllne-

tions of the model described in section 5 can be used to calculate Stark matrix

elements, and the ensuing energy matrix can be diagonalized for a subset of the

perturbation basis. Ref. [12] contains detailed results for the n = 15 Stark states

of lithium and sodium for m = 0 and m = 1, evaluated over the ranges used in ref.

[13] for the energies and electric field strengths. The non-hydrogenic structure is

clearly reproduced, demonstrating the expected sizable anticrossings and small-

field quadratic Stark effects for the s and p levels. All the Stark maps generated

for the n = 15 lines of lithium and sodium by the supersymmetry-based theory

are indistinguishable from the numerical and experimental results of ref. [13].

i
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